Background
Ph.D. in Physical Oceanography, University of Washington, 1987
M.S. in Marine Environmental Studies 1974, SUNY at Stony Brook, Stony Brook, New York
B.A. (cum laude) in Chemical Physics 1970, Pomona College, Claremont, California
One symptom of global climate change is an increase in the range of tides throughout most of the eastern Pacific. Sea levels are rising and storm waves are growing larger, resulting in potentially severe coastal erosion along Pacific shores—including near the mouth of the Columbia River.
David Jay is working to reinvent tidal analysis, a field of study that hasn’t been modernized since the 1920s. His research involves extracting more meaningful information from data points around the world to make better predictions about tide changes in the future. Results of the research will have wide-ranging uses for virtually anyone connected to the world’s oceans. That includes the U.S. Navy, which has approached Jay in an effort to know more about the tides in strategic locations around the world.
Closer to home, Jay is researching the effects man and nature have on salmon habitat in the Columbia River basin. As part of his interest in the Columbia, Jay and colleague Scott Wells are working to establish the Center for Columbia Basin Research at Portland State. It will be a multidisciplinary group that can advise the many state and federal agencies in Oregon and Washington on salmon and other river management issues.
Publications
Long-Term Evolution of Columbia River Tides Journal Article In: Journal of Waterway, Port, Coastal and Ocean Engineering, 137 (4), pp. 182-191, 2011. |
Distinguishing human and climate influences on hydrological disturbance processes in the Columbia River, USA Journal Article In: Hydrological Sciences Journal, 56 (7), pp. 1186-1209, 2011. |
Initial expansion of the Columbia River tidal plume: Theory and remote sensing observations Journal Article In: Journal of Geophysical Research, 115 (C2), 2010. |
River Influences on Shelf Ecosystems: introduction and synthesis Journal Article In: Journal of Geophysical Research, 115 , pp. C00B17, 2010. |
Multiple trophic levels fueled by recirculation in the Columbia River plume Journal Article In: Geophysical Research Letters, 37 (18), pp. L18607, 2010. |
Estuarine variability Incollection In: Valle-Levinson, A (Ed.): Contemporary Issues in Estuarine Physics, pp. 62-99, Cambridge University Press, 2010. |
Asymmetry of Columbia River tidal plume fronts Journal Article In: Journal of Marine Systems, 78 (3), pp. 442-459, 2009. |
A conceptual model of the strongly tidal Columbia River plume Journal Article In: Journal of Marine Systems, 78 (3), pp. 460-475, 2009. |
Effects of ambient velocity shear on internal solitons and associated mixing at the Columbia River front Journal Article In: Journal of Geophysical Research: Oceans, 114 (C2), 2009. |
Particle re-suspension in the Columbia River plume near-field Journal Article In: Journal of Geophysical Research: Oceans, 114, C00B14 (C2), 2009. |
Courses
CE 481/581 – The Columbia River as a System
Credits: 2
Lecture: Explores the climate and hydrologic processes that shape the Columbia River basin ecosystem, and relates these processes to the basin’s management context. The geographic scope includes the watershed, the mainstem and its reservoirs, major tributaries, the tidal river below Bonneville Dam, the estuary, the Columbia plume, and coastal waters that interact with the plume.
Prerequisites: Junior standing
Recommended: CE 361 and CE 371
CE 482/582 – Introduction to Sediment Transport
Credits: 4
Lecture: Fundamentals of sediment transport in natural surface waters. Analysis of the governing equations of mass, momentum, and sediment conservation. Covers bedload and suspended material transport in riverine and estuarine waters, focusing on non-cohesive materials. Cohesive material transport will be briefly introduced. May be taken only once for credit.
Prerequisites: CE 361 and CE 362
CE 483/583 – Estuarine Circulation
Credits: 4
Lecture: Introduction to the physical processes that govern estuarine and buoyant plume circulation. These include tides, density‐driven circulation, internal tidal asymmetry and frontal propagation.
Prerequisites: CE 361 and CE 371
Recommended: CE 576
CE 489/589 – Introduction to Advanced Fluid Mechanics
Credits: 4
Lecture and Laboratory: Advanced introduction to the geophysical fluid flows, including properties of seawater; conservation of mass, energy and momentum; dimensional analysis; the Navier‐Stokes, Reynolds and turbulent kinetc energy equations; geostrophy and potential vorticity; long and short waves; and turbulence and boundary layers. May be taken only once for credit.
Prerequisites: EAS 215, Mth 256, CE 361, and CE 362