Estuarine processes, hydrodynamics, remote sensing, tidal analysis

David Jay



Ph.D. in Physical Oceanography, University of Washington, 1987
M.S. in Marine Environmental Studies 1974, SUNY at Stony Brook, Stony Brook, New York
B.A. (cum laude) in Chemical Physics 1970, Pomona College, Claremont, California


One symptom of global climate change is an increase in the range of tides throughout most of the eastern Pacific. Sea levels are rising and storm waves are growing larger, resulting in potentially severe coastal erosion along Pacific shores—including near the mouth of the Columbia River.

David Jay is working to reinvent tidal analysis, a field of study that hasn’t been modernized since the 1920s. His research involves extracting more meaningful information from data points around the world to make better predictions about tide changes in the future. Results of the research will have wide-ranging uses for virtually anyone connected to the world’s oceans. That includes the U.S. Navy, which has approached Jay in an effort to know more about the tides in strategic locations around the world.

Closer to home, Jay is researching the effects man and nature have on salmon habitat in the Columbia River basin. As part of his interest in the Columbia, Jay and colleague Scott Wells are working to establish the Center for Columbia Basin Research at Portland State. It will be a multidisciplinary group that can advise the many state and federal agencies in Oregon and Washington on salmon and other river management issues.


91 entries « 2 of 10 »

Xie, J; Pan, J; Jay, D A

Multimodal internal waves generated over a subcritical ridge: Impact of the upper-ocean stratification Journal Article

In: Journal of Physical Oceanography, 45 (3), pp. 904-926, 2015.

Links | BibTeX

Talke, S A; Orton, P; Jay, D A

Increasing storm tides in New York Harbor, 1844-2013 Journal Article

In: Geophysical Research Letters, 41 (9), 2014.

Links | BibTeX

Zaron, E D; Jay, D A

An Analysis of Secular Change in Tides at Open-Ocean Sites in the Pacific Journal Article

In: Journal of Physical Oceanography, 44 (7), pp. 1704–1726, 2014.

Links | BibTeX

Devlin, A T; Jay, D A; Talke, S A; Zaron, E D

Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution? Journal Article

In: Ocean Dynamics, 64 (8), pp. 1093-1120, 2014.

Links | BibTeX

Templeton, W; Jay, D A

Lower Columbia River sand supply and removal: estimates of two sand budget components Journal Article

In: ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, 139 (5), pp. 383-392, 2013.

Links | BibTeX

Moftakahri, H R; Jay, D A; Talke, S A; Kukulka, T; Bromirski, P D

A novel approach to flow estimation in tidal rivers Journal Article

In: Water Resources Research, 49 (8), pp. 1-16, 2013.

Links | BibTeX

Matte, P; Jay, D A; Zaron, E D

Adaptation of Classical Tidal Harmonic Analysis to Non-Stationary Tides, with Application to River Tides Journal Article

In: Journal of Atmospheric and Oceanic Technology, 30 , pp. 569-589, 2013.


Talke, S A; Jay, D A

Nineteenth Century North American and Pacific Tides: Lost or just forgotten? Journal Article

In: Journal of Coastal Research, 29 (6a), pp. 118-127, 2013.

Links | BibTeX

Nowacki, D J; Horner-Devine, A R; Nash, J D; Jay, D A

Rapid sediment removal from the Columbia River plume near field Journal Article

In: Continental Shelf Research, 35 , pp. 16-28, 2012.

Links | BibTeX

Yeh, H; Tolkova, E; Jay, D A; Talke, S A; Fritz, H

Tsunami Hydrodynamics in the Columbia River Journal Article

In: Journal of Disaster Research, 7 (5), pp. 604-608, 2012.

Links | BibTeX

91 entries « 2 of 10 »


CE 481/581 – The Columbia River as a System

Credits: 2

Lecture: Explores the climate and hydrologic processes that shape the Columbia River basin ecosystem, and relates these processes to the basin’s management context. The geographic scope includes the watershed, the mainstem and its reservoirs, major tributaries, the tidal river below Bonneville Dam, the estuary, the Columbia plume, and coastal waters that interact with the plume.

Prerequisites: Junior standing
Recommended: CE 361 and CE 371

CE 482/582 – Introduction to Sediment Transport

Credits: 4

Lecture: Fundamentals of sediment transport in natural surface waters. Analysis of the governing equations of mass, momentum, and sediment conservation. Covers bedload and suspended material transport in riverine and estuarine waters, focusing on non-cohesive materials. Cohesive material transport will be briefly introduced. May be taken only once for credit.

Prerequisites: CE 361 and CE 362

CE 483/583 – Estuarine Circulation

Credits: 4

Lecture: Introduction to the physical processes that govern estuarine and buoyant plume circulation. These include tides, density‐driven circulation, internal tidal asymmetry and frontal propagation.

Prerequisites: CE 361 and CE 371
Recommended: CE 576

CE 489/589 – Introduction to Advanced Fluid Mechanics

Credits: 4

Lecture and Laboratory: Advanced introduction to the geophysical fluid flows, including properties of seawater; conservation of mass, energy and momentum; dimensional analysis; the Navier‐Stokes, Reynolds and turbulent kinetc energy equations; geostrophy and potential vorticity; long and short waves; and turbulence and boundary layers. May be taken only once for credit.

Prerequisites: EAS 215, Mth 256, CE 361, and CE 362